Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(6): e10593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023694

RESUMO

Clostridioides difficile spores are considered as the major source responsible for the development of C. difficile infection (CDI), which is associated with an increased risk of death in patients and has become an important issue in infection control of nosocomial infections. Current treatment against CDI still relies on antibiotics, which also damage normal flora and increase the risk of CDI recurrence. Therefore, alternative therapies that are more effective against C. difficile bacteria and spores are urgently needed. Here, we designed an oxidation process using H2O2 containing PBS solution to generate Cl- and peroxide molecules that further process Ag and Au ions to form nanoboxes with Ag-Au peroxide coat covering Au shell and AgCl core (AgAu-based nanoboxes). The AgAu-based nanoboxes efficiently disrupted the membrane structure of bacteria/spores of C. difficile after 30-45 min exposure to the highly reactive Ag/Au peroxide surface of the nano structures. The Au-enclosed AgCl provided sustained suppression of the growth of 2 × 107 pathogenic Escherichia coli for up to 19 days. In a fecal bench ex vivo test and in vivo CDI murine model, biocompatibility and therapeutic efficacy of the AuAg nanoboxes to attenuate CDI was demonstrated by restoring the gut microbiota and colon mucosal structure. The treatment successfully rescued the CDI mice from death and prevented their recurrence mediated by vancomycin treatment. The significant outcomes indicated that the new peroxide-derived AgAu-based nanoboxes possess great potential for future translation into clinical application as a new alternative therapeutic strategy against CDI.

3.
Commun Biol ; 6(1): 124, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721030

RESUMO

Group A Streptococcus (GAS) is a strict human pathogen possessing a unique pathogenic trait that utilizes the cooperative activity of NAD+-glycohydrolase (NADase) and Streptolysin O (SLO) to enhance its virulence. How NADase interacts with SLO to synergistically promote GAS cytotoxicity and intracellular survival is a long-standing question. Here, the structure and dynamic nature of the NADase/SLO complex are elucidated by X-ray crystallography and small-angle scattering, illustrating atomic details of the complex interface and functionally relevant conformations. Structure-guided studies reveal a salt-bridge interaction between NADase and SLO is important to cytotoxicity and resistance to phagocytic killing during GAS infection. Furthermore, the biological significance of the NADase/SLO complex in GAS virulence is demonstrated in a murine infection model. Overall, this work delivers the structure-functional relationship of the NADase/SLO complex and pinpoints the key interacting residues that are central to the coordinated actions of NADase and SLO in the pathogenesis of GAS infection.


Assuntos
Streptococcus , Estreptolisinas , Humanos , Animais , Camundongos , Proteínas de Bactérias , NAD+ Nucleosidase
4.
Infect Drug Resist ; 16: 413-421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36718463

RESUMO

Introduction: Nucleotide-binding domain leucine-rich repeat protein (NLRP) is critical in the inflammasome-activation pathway, which is important for host survival and the clearance of Clostridioides difficile. Therefore, the influence of NLRP1 polymorphisms on C. difficile colonization (CdC) or infection (CDI) was analyzed. Materials and Methods: A prospective cohort study consisted of hospitalized adults was conducted from January 2011 to January 2013. Single nucleotide polymorphisms (SNPs) of NLRP1, including rs12150220, rs2670660, rs6502867, rs878329, rs8182352, rs3744717, and rs11078571, were incorporating in analyses. The episodes of CdC and CDI were the primary and secondary outcome, respectively. Results: Of the total of 509 eligible patients, 376 (73.9%) had neither CdC nor CDI, 104 (21.8%) had CdC without developing CDI, and 29 (4.3%) developed CDI during the study period. Through multivariate analyses, comorbid diabetes mellitus (adjusted odds ratio [AOR] 1.59, P=0.04) and CC genotype in NLRP1 rs3744717 (AOR 1.70, P=0.02) were recognized as the risk factor of CdC. After adjusting the independent predictors of CDI, in terms of comorbid diabetes mellitus (AOR 3.18, P=0.005) and prior exposure to ceftazidime/ceftriaxone (AOR 2.87, P=0.04) or proton pump inhibitors (AOR 3.86, P=0.001), patients with CC+GC genotype in NLRP1, rs878329 (AOR 2.39, P=0.03) remained a higher risk of CDI. Conclusion: For hospitalized adults, the association of CC genotype in NLRP1 rs3744717 and CdC as well as the CC+GC genotype in NLRP1 rs878329 and CDI was respectively evidenced. We believed the prompt identification of patients having specific genotype in NLRP1 would prevent and improve the quality of care in CDI.

5.
Front Microbiol ; 13: 986457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439832

RESUMO

Clostridioides difficile is a major causative pathogen of nosocomial antibiotic-associated diarrhea and severe colitis. Despite the use of vancomycin and fidaxomicin as standard drugs for the treatment of C. difficile infection (CDI), clinical relapse rates remain high. Therefore, new alternative therapeutics to treat CDI are urgently required. The nuclear receptor, peroxisome proliferator-activated receptor-γ (PPAR-γ), is mainly expressed in the adipose tissue and modulates lipid metabolism and insulin sensitization. Previous studies have shown that PPAR-γ is highly expressed in colonic tissues and regulates tight junction function in epithelial cells. However, the role of PPAR-γ in CDI pathogenesis remains unclear. In this study, we used a mouse model of CDI and found that both expression levels of PPAR-γ and the tight junction protein, occludin, were decreased in colonic tissues. Furthermore, to investigate the role of PPAR-γ in CDI, we used PPAR-γ defective mice and found that intestinal permeability and bacterial dissemination in these mice were significantly higher than those in wild-type mice during CDI. Administration of the PPAR-γ agonist, pioglitazone, to activate PPAR-γ activity improved the phenotypes of CDI, including bodyweight loss, inflammation, and intestinal integrity. Taken together, these results demonstrate that PPAR-γ is a potential therapeutic target in CDI, as it modulates colonic inflammation and integrity.

6.
J Biomed Sci ; 29(1): 76, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180910

RESUMO

Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Apoptose , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Transdutores
7.
Antibiotics (Basel) ; 11(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35052993

RESUMO

Background: Doxycycline possesses antibacterial activity against Clostridioides difficile and anti-inflammatory effects. Materials and Methods: The influence of doxycycline on the development of CDI was studied in an established animal model of CDI using C57BL/6 mice. Results: Mice intraperitoneally administered doxycycline had higher cecum weight (1.3 ± 0.1 vs. 0.5 ± 0.1 g; p < 0.001) and less body weight reduction (0.7 ± 0.5 g vs. -17.4 ± 0.2 g; p < 0.001) than untreated mice infected with C. difficile. Oral doxycycline, metronidazole, or vancomycin therapy resulted in less body weight reduction in mice with CDI than in untreated mice (1.1 ± 0.1 g, 1.3 ± 0.2 g, 1.2 ± 0.1 g, vs. 2.9 ± 0.3 g; p < 0.001). Doxycycline therapy led to lower expression levels of inflammatory cytokines, such as macrophage inflammatory protein-2 (0.4 ± 0.1 vs. 2.9 ± 1.3, p = 0.02), and higher levels of zonula occludens-1 (1.2 ± 0.1 vs. 0.8 ± 0.1, p = 0.02) in colonic tissues than in untreated mice. Conclusions: Concurrent intraperitoneal administration of doxycycline and oral C. difficile challenge does not aggravate the disease severity of CDI, and oral doxycycline may be a potential therapeutic option for CDI.

8.
J Med Ultrasound ; 30(4): 300-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36844771

RESUMO

Acute renal infarction is a rare form of vascular emergency. Although major risk factors of renal infarction are due to cardio-embolic events such as atrial fibrillation, valvular or ischemic heart disease, renal artery thrombosis/dissection, and coagulopathy, the prevalence of idiopathic acute renal infarction can be as high as 59%. Two cases that contributed to this emergency are presented. The history, physical examination, and clinical imaging findings for clinical assessment are briefly described. Point-of-Care Ultrasonography (POCUS) was used to exclude other etiology and identify the pathological changes. The role of POCUS in rapid rule in acute renal infarction has been emphasized in clinical settings.

10.
Front Immunol ; 12: 691039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322122

RESUMO

Background: Clostridioides difficile is the leading cause of nosocomial infectious diarrhea. Toll-like receptors (TLRs) are the major components of innate immunity that sense pathogens. The relationship between TLRs and C. difficile infection (CDI) was analyzed in clinical patients and a mouse model. Materials and Methods: A prospective investigation was conducted in medical wards of Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan, from January 2011 to January 2013. Adult patients were followed up for the development of CDI. Single nucleotide polymorphisms (SNPs) of TLR2 and TLR4 were analyzed to assess the relationship between genetic polymorphisms and the development of CDI. A mouse model of CDI was used to investigate the pathogenic role of TLRs in CDI, TLR2 and TLR4 knockout (Tlr2-/- and Tlr4-/-) mice. Results: In the prospective study, 556 patients were enrolled, and 6.5% (36) of patients, accounting for 3.59 episodes per 1000 patient-days, developed CDI. Of 539 patients with available blood samples, the TLR2 rs3804099 polymorphism was more often noted in those with CDI than in those without CDI (64.5% vs. 46.1%; P = 0.046) but was not significant in multivariate analysis. Because the TLR2 rs3804099 polymorphism was moderately associated with CDI, the role of TLR2 and TLR4 was further evaluated in a mouse model. Both Tlr2-/- and Tlr4-/- mice showed more severe CDI disease than wild-type mice in terms of body weight change and fecal content five days after oral challenge with C. difficile. Furthermore, Tlr2-/- mice suffered from more severe disease than Tlr4-/- mice, as evidenced by stool consistency, cecum weight, and survival rate. Conclusion: The TLR2 rs3804099 polymorphism is marginally associated with the development of CDI, and the pathogenic role of TLR2 is further supported by a mouse model.


Assuntos
Infecções por Clostridium/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Povo Asiático/genética , Clostridioides difficile , Infecções por Clostridium/genética , Infecções por Clostridium/patologia , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Masculino , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
11.
Int J Med Mushrooms ; 22(4): 367-377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32558501

RESUMO

Medicinal mushrooms fruiting bodies have been used as food or medicine for years but cultured mycelium is faster to grow and costs less. This research studied the antioxidant activities of three species (five strains) of medicinal mushroom mycelia (Cordyceps militaris, Ganoderma tsugae I and II, Trametes versicolor I and II). Two-stage extractions were performed: first the sample was extracted with 70% ethanol, and then the residue was extracted with 95°C hot water. Both ethanolic and hot water extracts showed effective concentration (EC50) values of 0.29-4.22 mg/mL, indicating that these extracts were remarkably effective in antioxidant activities. The ethanolic extracts displayed more effective reducing power, scavenging, and chelating ability (EC50 0.33-2.37 mg/mL) than hot water extracts (EC50 0.58-4.22 mg/g). Besides, ethanolic extracts contained higher total phenol content (75.49-144.99 GAE mg/g) than the hot water extracts (22.77-58.68 GAE mg/g). Furthermore, the ethanolic extracts contained flavonoids but not the hot water extract. Overall, these mycelia were highly effective in the antioxidant activities and might be potent antioxidants.


Assuntos
Antioxidantes/farmacologia , Fungos/química , Antioxidantes/química , Técnicas de Cultura Celular por Lotes , Etanol/química , Flavonoides/análise , Flavonoides/farmacologia , Fungos/classificação , Fungos/crescimento & desenvolvimento , Micélio/química , Micélio/classificação , Micélio/crescimento & desenvolvimento , Fenol/análise , Fenol/farmacologia , Água/química
12.
Front Microbiol ; 10: 1141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178844

RESUMO

Current antibiotic treatments fail to eliminate the Clostridium difficile (C. difficile) spores and induce dysbiosis and intestinal inflammation via off-target effect, which causes refractory C. difficile infection raise an unmet need for a spore-specific antimicrobial treatment. We developed a sporicidal and antimicrobial vancomycin-loaded spore-targeting iron oxide nanoparticle (van-IONP) that selectively binds to C. difficile spores. Cryo-electron microscopy showed that vancomycin-loaded nanoparticles can target and completely cover spore surfaces. They not only successfully delayed the germination of the spores but also inhibited ∼50% of vegetative cell outgrowth after 48 h of incubation. The van-IONPs also inhibited the interaction of spores with HT-29 intestinal mucosal cells in vitro. In a murine model of C. difficile infection, the van-IONP significantly protected the mice from infected by C. difficile infection, reducing intestinal inflammation, and facilitated superior mucosal viability compared with equal doses of free vancomycin. This dual-function targeted delivery therapy showed advantages over traditional therapeutics in treating C. difficile infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...